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The development of an unsteady temperature field on the surface of a semiinfinite 
body is studied in the case where the body is heated by rectangular heat pulse 
through an annular region. 

The heating of infinite and. semiinfinite bodies by short pulses of heat through regions 
of variousshapes is widely used in many of the pulse methods of determining the thermal and 
physical characteristics of materials [1-3]. 

In the present paper we present an analytical method of nondestructive analysis of the 
thermal and physical characteristics of the materials. The heating of the surface of the 
body is supplied by a thin annular heat source with a heat flux density given by 

q (~) = qoU (~o--  ~). 

The problem is formulated as follows. The semiinfinite body has an initial temperature 
T O = const. For times T > 0 part of the surface (an annular heat source) is heated by a pulse 
heat flux of density q0 and duration t 0. The rest of the surface, i.e., the region 0 ~ r ~ R z 
and R 2 < r < ~, is thermally insulated. The origin of coordinates r = z = 0 is chosen to 
be the center of the annular region on the surface (z = 0) of the body. 

The above statement of the problem leads to a system of three heat-conduction equations 

l O [ aOi(r, z, ~) ] a'Oi(r, z, T) 1 ae,(r, z, ~) (i~1, 2,3), (1) 
r Or Or az2 a or 

w h e r e  e l ( r ,  z ,  x )  i s  t h e  e x c e s s  t e m p e r a t u r e  i n  t h e  r e g i o n  0 ~ r < R l ,  z ~ 0 ,  �9 > 0;  6 ~ ( r ,  
z ,  ~) - R z ~ r $ R 2,  z ~ 0 ,  �9 > 0;  0 3 ( r ,  z ,  ~) - r > R 2,  z ~ 0 ,  z > 0.  

The boundary conditions for (i) are written in the form 
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The solution of system (I) with the boundary conditions (2)-(10) for any point on the 
surface z = 0 of the semiinfinite body is written for the above three regions of r: 

for 0 & r < R~, z = 0, �9 > 0 (Fo > 0) 

or(~,o,  Fo) -- " " [~h2. _ . + m +  
Ki = / - - ~ - E E A , ~ , , = k R 2 j  Vo o , • 

n~0 m~O 

• K m - - T e x p  8Fo 2 , 2 4 \ 4 F o J  
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)% w m 3 m t/-- 
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When Fo & Fo 0 (~o ~ ~) it is not difficult to obtain from (11)-(13) expressions for the 
relative excess temperatures Oi* (r, 0, Fo)/Ki for the case of a continuous (constant) heat 
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Fig. I. Dependence of the dimensionless temperature on the 
relative coordinate r/R 2 for fixed values of Fo on the sur- 
face of a semiinfinite body: a, Fo < Foo, K R = 0.2; I) Fo = 
0.05; 2) 0.i; 3) Fo = 0.2; b, Fo > Fo0, K R = 0.8, Fo 0 = 0.04; 
i) Fo = 0.i; 2) 0.15; 3) Fo = 0.2. 

flux q0 = const in an annular region R I ~ r ~ R 2 on the surface of the semiinfinite body, 
since in this case U(Fo - Fo 0) = 0. 

In the general case (Fo > Fo 0) the temperature fields (ii) through (13) on the surface 
of the semiinfinite body, subject to a heat pulse on the surface, are characterized by two 
stages: 

a) In the first stage (0 < z ~ T o ) there is an unsteady heating of the semiinfinite body 
and the temperature of the surface rises to the values given by (11)-(13). 

b) In the final stage (upon the termination of the source q0 = const for �9 > z0 (Fo > 
Fo0)) there is a redistribution of the heat absorbed by the body in the first stage and there 
is a slow equalization of the temperatures (11)-(13) over the entire volume of the body. 

Figure i shows graphs of the relative excess temperatures (11)-(13) for these two stages, 
as functions of the relative coordinate r/R 2 for fixed values of the parameters Fo, ~0, and 
KR. 

We consider the solution (11)-(13) for limiting values of R I and R 2 of a thin annular 
heater with the heat flux (2). When R l + 0 we obtain from (12) and (13) the unsteady temper- 
ature distribution on the surface of the semiinfinite body for the case of a thin circular 
heat source of radius R= and duration z0 [9, I0]: 
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Fig. 2.  Dependence of the dimensionless temperature on the 
relative coordinate r/R 2 for R I = 0 and fixed Fo on the sur- 
face of a semiinfinite body: a, Fo < Fo0; I) Fo = 0.05; 2) 
0.i; 3) Fo = 0.2; b, Fo > Fo0; Fe 0 = 0.04, i) Fo = 0.1; 2) 
0.15; 3)  Fo = 0 . 2 .  
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The unsteady temperature distributions (15) and (16) for a circular heat pulse acting 
on the surface are shown in Fig. 2 for the two stages (Fo ~ Fo 0 and Fo > Fo 0) as functions 
of the relative radius r/R 2 for fixed values of Fo and @b. 

When R 2 § ~ (KR + 0) we obtain from (ii) and (12) the unsteady temperature fields on 
the surface for a rectangular heat pulse q0 = const of duration t 0 acting over the entire 
surface of the body except for the regions 0 & r < R l (z = 0): 
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Fig. 3. Dependence of the dimensionless temperature on the 
relative coordinate r/R l for R 2 = ~ and fixed values of Fo 
on the surface of a semiinfinite body: a, Fo I < Fo0*; i) 
Fo I = 0.i, 2) 0.15; 3) Fo I = 0.25; b, Fol > Fo0*, Fo0* = 
0.04; I) Fo~ = 0.i; 2) 0.2; 3) 0.3; 4) 0.54; 5) Fo~ = 1.0. 

x [exp / (r/R1)2 
8FOl ] L 
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Figure 3 shows the solutions (17) and (18) for two cases, when Fo I ~ Fo0* (T ~ T O ) and 
Fol > Fo0* (~ > ~o)- 

NOTATION 

0 i (r, 0, T) = T i (r, 0, T) - To, excess temperatures on the surface of the semiinfinite 
body in the corresponding regions of r (see text); R2, Rl, r, the outer and inner radii of 
the annular heater, and the distance from the center, respectively; q0 constant heat flux 
desnity in the annular region R I ~ r ~ R 2 on the surface of the semiinfinite body during the 
time interval 0 ~ T ~ To; ~ , l, b, thermal diffusivity, thermal conductivity, and thermal 
activity of the body; z,T,distance normal to the surface of the body and time, respectively; 
Ki = qoR2/lT0, Ki I = q0R1/lT0, Kirpichev numbers; Fo - a~/T~, Fo I =~T/R~, Ro 0 = ~T0/R~, 
Fo0* = ax0/R~, Fourier numbers; U(T -- T 0) = U(Fo - Fo 0) = U(Fo I - Fo0*), Heaviside unit step 
function; K R = RI/R=, ratio of the inner and outer radii of the annular heater; Wk,~(X), Whit- 
taker functlon 4 8 1 2 Fokh ammer s bol C m n �9 [ - ]; (/)m, g ym ; n = (m)' binomial coefficients; Oi* = @i(r, 
0, Fo)/T0, dimensionless relative temperature; ~0 = T/T0, relative time; TO, time duration 
of the constant intensity heat source. 
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THICKNESS OF THE LAYER OF SORPTION DEVELOPER IN CAPILLARY 

INSPECTION 

P. P. Prokhorenko, N. P. Migun, 
and G. E. Konovalov 

UDC 532.68 

The article introduces and analyzes expressions for determining the thickness of 
the layer of developer applied to the inspected solid body for revealing surface 
flaws of different shape by methods of capillary flaw detection. 

Various methods of capillary inspection (or capillary flaw detection) are classed in 
one group by the following traits. Firstly, they are all intended for revealing surface 
flaws. Secondly, their principle of functioning is based on the use of a luminescent or 
colored indicator liquid (penetrant) which, having been previously applied to the inspected 
surface and then removed from it, penetrates from flaws into the thin layer of powdery or 
suspension developer and forms on its surface a contrasting, visualized "trace" of the flaw. 
A recent theoretical investigation of the hydrodynamics of indicator liquids in processes 
of capillary flaw detection made it possible to construct a hydrodynamic theory of the stages 
of making flaws visible and to derive a number of formulas for evaluating the sensitivity 
threshold and the duration of inspection [I, 2]. It follows from the obtained results that 
in revealing blind surface flaws with the aid of a powdery sorption developer, there exists 
a maximal thickness of the layer of developer hmax, and when this is exceeded, flaws of a 
certain width of opening (or less) cannot be made visible any more. We will find the values 
of hma x in revealing cracks with plane parallel and nonparallel walls, and also of cylindrical 
flaws. 

Crack with plane parallel walls (Fig. la). If on an inspected solid surface there are 
flaws, then an indicator liquid applied to it penetrates into their cavities under the effect 
of capillary pressure Pc = 2o cos 8/H. As a rule, the penetrants wet solid surfaces well, 
and therefore for the sake of simplicity of further explanation we put cos 8 = i. After the 
liquid has been removed from the surface, the residual depth to which it fills the crack with 
depth 10 and width H is determined by the expression I = n Lo~ (0 < n ~ I) [i], where ~ = 2o/ 
(2o + PaH). Assume that to the inspected surface a layer of powdery sorption developer with 
thickness h is applied (Fig. la). The penetrant from the cavity of the flaw wets the de- 
veloper, and as a result a "trace" of the flaw forms on the outer surface of the developer 
which becomes luminescent in ultraviolet light. In dependence on the ratio between the 
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